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he systematic ability to create share-
holder value through capital investment
has always been critical to the long-run
success of an enterprise. Never before,

strategy, where the analyst’s best guess of future net
cash flows attributable to the investment are dis-
counted to present values. The risk of these cash
flows is incorporated in the discounting procedure
through a risk-adjusted discount rate.

While the traditional NPV criterion does a
reasonable job of valuing simple, passively managed
projects, it is well established that the criterion does
not capture the many ways in which a highly
uncertain project might evolve, and the ways in
which active managers will influence this evolution.1
For example, consider the following issue in new
product development. A pharmaceutical firm’s re-
search and development program recently gener-
ated a promising idea for a new pharmaceutical
product, and successful Phase II clinical trials of the
drug have just been completed. One year of Phase
III clinical trials is now required. If the trials lead to
FDA approval for an indication with broad market
potential, they will be followed by full-scale produc-
tion. Capital outlays are required to begin the trials,
and a much larger expenditure will be required one
year from now as mass production is initiated.

*This work has benefited from the helpful comments of Stephen Allen,
Fernando Alvarez, Steven Feinstein, Diane Lander, Karen Maccaro, Kirtland Poss,
Mark Potter, Gordon Sick, Bob Taggart, many graduate students at the F. W. Olin
Graduate School of Management at Babson College, and participants in executive
education programs. Any errors or omissions are the sole responsibility of the
author.

1. See, for example, Trigeorgis and Mason (1987), Baldwin and Clark (1992),
Kulatilaka and Marcus (1992), and Dixit and Pindyk (1995). See Trigeorgis (2001)
for a comprehensive review of the academic literature on real options. Full citations
for all references appear at the end of the article.

however, has the uncertainty surrounding invest-
ment decisions been greater, as managers increas-
ingly find themselves evaluating requests for capital
today in exchange for a stream of almost unknow-
able net cash flows expected into the future. For
some firms, uncertainty arises from a need to make
aggressive moves to secure market share in an
Internet economy. For others, it results from the
opportunities and threats created by rapid techno-
logical development and commercialization. In gen-
eral, market leadership requires calculated risk tak-
ing, tempered by the discipline of a quantitative
analysis of investment decisions.

Traditionally, investment proposals have been
evaluated using the net present value (NPV) ap-
proach, wherein discounted future net cash flows
are related to the initial investment to assess the likely
impact of the project on shareholder wealth. The
NPV rule implicitly assumes a “buy and hold”

T
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Project cash inflows from full-scale production are
highly uncertain, both because they will not be
received for more than one year and because they
are dependent upon the results of clinical testing.
Still, they are estimated as carefully as possible by
considering factors such as potential market size,
likely market share, and input costs.

The traditional next step in this hypothetical
example is the application of the NPV rule. The NPV
would be measured as the discounted value of all
flows expected for the project: the initial cash
outflow for the clinical trials, the plant investment
one year hence, and a stream of net cash inflows
from full-scale production and distribution. Let’s
suppose that the NPV of this project is negative,
signaling that the drug should not be developed.
Were management to reject the project based on a
negative NPV, they would be missing a critical
feature of the investment opportunity: upon the
conclusion of the clinical trials, management has the
right, but not the obligation, to make additional
capital expenditures. That is, if trials reveal an
indication with limited market potential, there will be
no need to make the large capital expenditures
necessary for large-scale production. Standard NPV
analysis, however, treats all expected future cash
flows as if they will occur, implicitly assuming a
passive management strategy. It recognizes no
managerial ability to restructure or terminate the
project should new information suggest a change
in strategy.

An alternative way to look at this investment
uses the notion of a call option borrowed from
securities markets. A call option is the right, not the
obligation, to buy a specified underlying asset at a
specified price (the exercise or strike price) and time
(the expiration date).2 In securities markets, the
underlying asset is typically a share of stock, al-
though other types of options also are common.
Obviously, the option will be exercised only if the
value of the underlying asset is above the strike price
on the expiration date. Otherwise, the holder of the
option will allow it to expire worthless.

How does this apply to our pharma develop-
ment example? This project is really a series of two
consecutive investments, or development stages.
Stage One involves non-discretionary cash outflows

for Phase III trials; these need to be made to open
the door to producing and selling the product.
Stage Two can be described as a call option on
future cash inflows from the project, where the
exercise price is the capital expenditure necessary
to initiate full-scale production. This capital expen-
diture will be made only if the trials are sufficiently
successful. The option to make the plant investment
in the future is an example of a call option on a real
asset, or a real option.

The flexibility inherent in Stage Two is not well
addressed with the NPV decision rule. It is more
appropriate to evaluate Stage Two using option
pricing techniques. In fact, by ignoring the reality
that the future capital outlay is subject to managerial
discretion, the NPV rule would undervalue this
opportunity. Managers, then, may systematically be
rejecting product development proposals (and other
long-term investment proposals) that really deserve
further exploration.

The reality is that effective managers will ac-
tively manage their strategic initiatives, including
pursuing opportunities created from the initiative, or
pulling the plug if warranted. While managers
qualitatively recognize the possibilities, they know
that sound decisions will be made systematically
only if they are subjected to the discipline of a
quantitative shareholder value analysis. Most man-
agers recognize the shortcomings of the NPV rule
when applied to highly uncertain strategic initiatives,
and many are aware that an alternative options-
based approach exists. Unfortunately, the shortage
of practical guidance on the implementation of a real
options analysis leaves a large gap between mana-
gerial awareness and implementation. While there is
now an excellent body of research on the topic of
real options, much of it is so complex that it is not
inviting to managers, or so narrow that it creates
more questions than it answers. Too many managers
remain more intrigued than engaged.

This objective of this paper is to enhance
managerial understanding of real options by synthe-
sizing existing knowledge into a simplified, practical
approach to their recognition and evaluation. Recent
published works by Tim Luehrman (1998) and
Aswath Damodaran (2000) have helped to close the
understanding gap by illustrating the use of the

2. This defines a European option, which can be exercised only on the
expiration date. In contrast, an American option allows the holder to exercise any
time until and including the expiration date.
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Black-Scholes option pricing model to value real
options. A recent paper by Lenos Trigeorgis (2001)
demonstrates the valuation of real options using a
binomial approach. The current paper contributes to
the literature by addressing the relationship between
the binomial and Black-Scholes approaches, and
introducing the mathematical details necessary to
implement a real options analysis using either method.
By demonstrating the distinctive properties of an
option through a binomial approach, together with
an illustration of how the binomial model converges
to the Black-Scholes model, this paper seeks to help
the reader gain an understanding of the essence of
both approaches. This paper certainly will not make
the reader an expert in real option valuation, and is
not intended to replace more detailed books written
on the topic.3 Instead it is intended to be a concise
and practical introduction to the basic principles of
valuing real options.

The remainder of this paper is organized as
follows: Examples of four basic categories of real
options—timing, growth, production, and abandon-
ment—are introduced in the second section using a
simple binomial framework. That is, each example
assumes that there are two possible payoffs to the
capital investment project at the end of a year. The
examples are used to illustrate the various forms of
a real option, and to demonstrate the shortcomings
of an NPV analysis where flexibility is present. The
third section shows how the restrictive nature of the
binomial approach (that is, allowing for only two
outcomes) can be overcome by allowing for increas-
ing numbers of binomial trials within the planning
period. It describes how, as the number of binomial
trials approaches infinity, the binomial model con-
verges to the Black-Scholes Option Pricing Model.4
While the Black-Scholes model was developed to
value options written on securities, the manner in
which it can be extended to the valuation of real
options is outlined. To illustrate these extensions, an
example introduced in section two is re-worked in
section three within the Black-Scholes framework.
The fourth section addresses the appropriate dis-
count rate to use in a real options analysis, and the
fifth section addresses the issue of volatility and the
mathematical details of constructing an event tree for
a binomial analysis.

THE MANY FACES OF A REAL OPTION

1. A Timing Option: Pharmaceutical
Development

Let’s flesh out the pharmaceutical example
introduced above. Suppose that Phase II clinical
trials of this new drug have just been completed, and
the firm is about to launch critical Phase III trials. Past
experience with similar compounds suggests a 33.0%
probability of success to the trials, where success is
defined as FDA approval for an indication with broad
market potential. Should the trials be successful, the
value one year from now of expected cash inflows
from that point on under full-scale production is
estimated to be $39 million. Should the trials be
unsuccessful (67.0% probability), FDA approval for
an application with limited potential will result, and
the value in one year of the expected cash inflows
is estimated to be $4.3 million. Full-scale production
requires the construction of a new plant with an
estimated cost today of $10 million. If clinical trials
require an up-front investment of $4 million, and the
firm’s risk-adjusted required rate of return on this
project is 20%, should the trials be undertaken?

Managers traditionally would answer this ques-
tion by computing the NPV of the project. This is
quite straightforward since there are only three
cash flows: an outflow of $4 million today for the
trials, an outflow of $10 million today for plant
construction, and a probability weighted average
of payoffs to be received in one year. The NPV
calculation is as follows:

NPV = –$14 +([(.330)($39.00) + (.670)($4.30)]/(1 + .20))
= –$0.9 million [1]

According to this calculation, this investment will
reduce shareholder wealth by approximately $0.9
million, and should be rejected.

But, wait a minute: the above calculation as-
sumes the plant will be constructed today, before the
outcome of the trials is known. Suppose we factor in
our ability to choose to make the plant investment.
Specifically, suppose the firm estimates that it can
construct the same plant for an investment of $12
million5 one year from now. Trials would begin

3. See, for example, Copeland and Antikarov (2001), Trigeorgis (1999), or
Amram and Kulatilaka (1999).

4. Black and Scholes (1973).

5. This figure is based on the assumption that the cost of the plant will rise
during the year at the risk-adjusted rate of return of 20%.

While there is now an excellent body of research on the topic of real options, much
of it is so complex that it is not inviting to managers. The shortage of practical

guidance on the implementation of a real options analysis leaves a large gap between
managerial awareness and implementation.



28
JOURNAL OF APPLIED CORPORATE FINANCE

today, so the outcome of the trials (successful or
unsuccessful) and the estimated present value of
future cash inflows ($39 million or $4.3 million)
would be known at the time the plant construction
would begin. Of course, it would be rational to make
the plant investment should the trials be successful,
because it clearly makes sense to invest $12 million
to realize a value of $39 million. If the trials are not
successful, the investment will not be made, because
it does not make sense to invest $12 million to realize
a value of $4.3 million.

Placing a value on the project from this new
point of view is made easier by constructing an
“event tree,” which is a graphical representation of
the possible outcomes of the project and their
associated probabilities. For this project, the event
tree is shown in Figure 1.

For simplicity, let’s assume that the discount rate
appropriate for this project remains at 20%. (We will
show later that it is not correct to discount option
payoffs at a risk-adjusted rate, but making this
simplifying assumption here allows us to make
progress in understanding how valuations change
when they explicitly incorporate operating flexibil-
ity.) The value of the project today, modified to
reflect the option to delay, is

Modified NPV = –$4 + ([(.330)($27.00) + (.670)($0)]/
(1 + .20))

= $3.4 million [2]

Incorporating managerial discretion (the option to
delay plant construction) changes our recommenda-
tion: If we have the choice to invest the $12 million
only if the outcome of clinical trials is favorable, this
project adds over $3 million to shareholder wealth,
and the initial $4 million investment is justified.

This provides a good opportunity to point out
a distinctive feature of an asset as an option, and it
involves the relationship between risk and value.
Suppose that we were more uncertain about the
success of the clinical trials, and were facing an even

wider spread of future outcomes. That is, we would
expect something more than $39 million in value if
the trials are successful, and something less than $4.3
million in value if trials are unsuccessful. How does
this affect the value of our option? The downside is
truncated at zero; no matter how poor our results
may be, we will realize a value no less than zero,
because we simply will not invest. On the other
hand, the possibility for greater value on the upside
represents a source of additional value, and the
option value will rise. In other words, there is a
positive relationship between uncertainty and op-
tion value, because the option allows us to capture
the upside while eliminating the downside.

This example uses simplifying assumptions to
illustrate how thinking of a capital investment as an
option affects its valuation. While it appears simple
to this point, it is important to state that we have
abstracted from some implementation details in
order to illustrate the essence of options approaches.
These details will be addressed in sections four and
five, and include the determination of the appropri-
ate discount rate and the measurement and incorpo-
ration of risk.

2. A Growth Option: e-commerce

Now that we have developed a basic under-
standing of the role of flexibility in project selection
decisions, let’s move on to a slightly more complex
example. Suppose you are a member of a small
management team seeking venture capital for a
promising new business-to-business electronic com-
merce venture. This is a highly uncertain proposi-
tion, but you have a hunch that the possibilities are
endless. The first year is critical, because extensive
market research indicates that initial client receptiv-
ity will largely determine the long-run success of
the venture.

The up-front investment, which totals $570
million, includes outlays for warehousing facilities
and a technology infrastructure. The realities of

FIGURE 1
Value one year from now=
max (0, $39 – $12) = $27

Value one year from now=
max (0, $4.3 – $12) = $0

Decision to spend
$4 is made today

p = .33

1 – p = .67
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development cost relative to scale cause you to
propose a larger warehouse capacity and more
robust technological capabilities than are needed to
support initial sales expectations. The benefit of this
excess capacity, however, is that it will be more
efficient for you to scale up should your product be
well received. At initial capacity levels, the firm is
expected to generate one year from now a present
value of future cash inflows of $800 million with 77%
probability or $450 million with 23% probability. The
additional capacity would require $200 million in
additional investment one year from now, and is
expected to increase the present value of cash flows
by 30% in each scenario (i.e., an additional $240
million for the favorable outcome, and an additional
$135 million for the unfavorable outcome). Standard
valuation of the full potential of this project would
recognize a cash outflow of $570 million today, an
outflow of $200 million one year from now, and
values in one year of $1,040 million ($800 + $240)
with 77% probability, or $585 million ($450 + $135)
with 23% probability. Assuming your backers re-
quire a risk-adjusted rate of return of 18% on this
venture, the project NPV would be

NPV = –$570 + ([–$200/(1 + .18)] + [(.77)($1040) +
(0.23)($585)]/(1 + .18))

= $53 million [3]

This figure indicates that the venture is expected
to cover expectations of an 18% return, and
provide an estimated additional shareholder value
of $53 million.

But let’s think for a moment about the nature of
this investment. It actually can be decomposed into
two distinct segments: an “asset-in-place” and a call
option. The value of the asset-in-place is determined
by the payoffs at the project’s original scale (the
initial $570 million investment generates either $800
million or $450 million one year from now). There
is no flexibility associated with this segment of the
investment. The value of the call option, however,

should reflect the fact that you have the right, but not
the obligation, to call on the additional capacity for
$200 million in one year in exchange for the
incremental value of either $240 or $135. Standard
NPV approaches will properly value the asset-in-
place, but will undervalue the option because they
fail to recognize the flexibility inherent in this
segment of the project. The event tree for this project,
shown in Figure 2, reflects the fact that excess
capacity will be brought on line only if the value to
be received exceeds the $200 million investment,
which occurs only in the more favorable state. The
value of the project now becomes the following:

Modified NPV = –$570 + ([(.77)($800 + $40) +
(.23)($450 + $0)]/(1 + .18))

= $66 million [4]

This result indicates that incorporating flexibility
adds over 24% to the project value, and strengthens
the case you will present to your venture backers.

The process used here to value this growth
option can be used to evaluate other options as well,
options more obscure and less restrictive than this
simplified example. Consider a staged entry into a
market, where an initial commitment made today to
“test the waters” may generate significant future
opportunities. Alternatively, consider a research and
development program, where the results of today’s
research may yield new products and cash flows
never before considered. The point is that, where
managers historically have relied on instinct to build
in excess capacity, test the waters, or engage in R&D,
real option valuation approaches provide a system-
atic way to evaluate decisions to engage in these
activities, and to set guidelines for how much to
spend on them.

3. A Production Option: Copper Mines

A third type of option value can be found in
operating flexibility, as illustrated in the following

FIGURE 2
Asset-in-place payoff: $800
Option payoff: max (0, $240 – $200) = $40

Asset-in-place payoff: $450
Option payoff: max (0, $135 – $200) = $0

Decision to spend
$570 million is
made today

p = .77

1 – p = .23

Never before has the uncertainty surrounding investment decisions been greater, as
managers increasingly find themselves evaluating requests for capital today in

exchange for a stream of almost unknowable net cash flows expected into the future.
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example: You are extracting and refining copper ore
from a mine in Australia, and the contents of the mine
are almost depleted. The remaining contents of the
mine, estimated to be sufficient to produce 42 million
pounds of refined copper, could be extracted in
about one year, but only if you make additional
investments to replace equipment. Spot prices of
copper on the London Metal Exchange have been
quite volatile, and are expected at year-end to be
either $1.548 per pound with a 45% probability, or
$0.429 per pound with a 55% probability. Variable
costs of refinement are expected to be $0.833 per
pound, and fixed extraction costs are estimated at
$10 million for the year. The risk-adjusted required
return for the investment is 15%, and special arrange-
ments with the Australian government allow you to
realize tax-free income. What is the most you should
invest in additional equipment?

The cash inflow in the favorable state is $20
million, computed as revenue of $65 million (42
million pounds at $1.548 per pound) less variable
costs to refine the copper ore of $35 million (42
million pounds at $0.833 per pound) and fixed costs
to extract the ore of $10 million. The cash inflow in
the unfavorable state is a negative $27 million,
computed based on a copper price of $0.429 and
costs as in the favorable state. The event tree for the
project is shown in Figure 3, and the present value
of cash inflows is

PV (inflows) = [(.45)($20) + (.55)(–$27)]/(1 + .15)
= –$5 million [5]

This calculation indicates you should be unwill-
ing to invest any further in this mine. But do you have
to refine the copper ore in the unfavorable state? If
the price of copper is below the variable cost of
production, it is much more sensible to walk away
from the investment, and limit your losses on the
downside to the unavoidable fixed extraction costs.
If we allow for this possibility, the event tree is as
shown in Figure 4.

The revised present value of cash inflows

Modified PV (inflows) = [(.45)($20) + (.55)(–$10)]/
(1 + .15)

= $3 million [6]

indicates that the option to produce increases the
present value of cash inflows from the mine to $3
million, and that any equipment replacement
expenditures less than $3 million will create
shareholder value.

Many managers, especially in ventures de-
pendent on natural resources, decide on a peri-
odic basis whether or not to produce. While this
example is simplified to assume that such a
decision is made once, it is straightforward to
extend it to incorporate periodic production de-
cisions. This example demonstrates that admitting
the possibility of unfavorable outcomes may sig-
nificantly change the evaluation of a project. By
extension, if operating flexibility is present, it is
reasonable to incorporate it in the initial evalua-
tion of a project’s value.

FIGURE 3

FIGURE 4

Payoff in one year = $20 million

Payoff in one year = –$27 million

Decision to invest
in additional
equipment is
made today

p = .45

1 – p = .55

Payoff in one year = $20 million

Payoff in one year = –$10 million

Decision to invest
in additional
equipment is
made today

p = .45

1 – p = .55
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4. An Abandonment Option: Natural Gas

Our fourth and final example represents an-
other planned response to an unfavorable outcome:
the exit strategy. Suppose that you are a planning
manager for a natural gas utility, and you are
considering a proposal to develop and operate a gas
main extension to serve an expanding residential
community. The value of the project is driven
primarily by the price of natural gas, a highly volatile
commodity. The main extension requires $340 mil-
lion to construct and will generate future cash
inflows that one year from now are expected to have
a present value of either $560 million or $182 million.
These two outcomes are equally likely. A traditional
analysis of the main extension, assuming a 16% risk-
adjusted discount rate, generates an NPV of

NPV = –$340 + ([(.5)($560 + (.5)($182)]/(1 + .16))
= –$20 million, [7]

which indicates the project should not be accepted.
But suppose that a local distribution company (LDC)
has entered into an agreement with you whereby it
agrees to purchase the extension from you one year
from now for $250 million, at your option. Obvi-
ously, you would only agree to the sale in the less
favorable state, and your project valuation becomes

Modified NPV = –$340 + ([(.5)($560) + (.5)($250)]/
(1 + .16))

= $9 million [8]

Incorporating the ability to sell the extension causes
the project to be acceptable from a shareholder value
perspective.

It is not uncommon for far-sighted project
advocates to admit the possibility of unfavorable
outcomes before a project begins, and many
implementation plans include an exit strategy.
This example demonstrates that formally incorpo-
rating an exit strategy into analyses can cause
project acceptance signals to reverse. It may seem
counterintuitive that admitting the possibility of
unfavorable outcomes could cause unacceptable
projects to become acceptable. The reversal oc-
curs where there is a favorable consequence to an
unfavorable outcome, which in this case is the

ability to sell the extension for more than the value
of holding it. This example also demonstrates that
there is value in making capital assets adaptable
to other uses where possible.

ALLOWING FOR MORE OUTCOMES: THE
BLACK-SCHOLES OPTION PRICING MODEL

Borrowing from the language of financial mar-
kets, we have just valued three call options, which,
as we saw earlier, represent the right, but not the
obligation, to spend funds in the future to realize
cash inflows. In the pharmaceutical timing option
example, we held the right to invest $12 million to
construct a plant one year from now. In the case of
the growth option, we had the right to invest $200
million to bring excess capacity on line one year
hence. Finally, in the production example, we had
the right to incur variable costs of production to
exploit a copper mine. We also valued a put option:
the right, but not the obligation, to sell an asset in the
future for some pre-specified price. In the gas main
extension example, we could choose to sell the main
extension to a local competitor for $250 million.

These examples are formulated as binomial
processes: two possible outcomes are considered at
the end of the year. If an uncertain variable follows
a binomial process, its value will either increase by
an up movement to an up state, or decrease by a
down movement to a down state. The magnitudes of
the up and down movements, and their probabili-
ties, depend upon the degree of uncertainty sur-
rounding the movements of the variable. While a
binomial formulation is convenient for expositional
purposes, two possible outcomes at the end of a year
is clearly an unrealistic depiction of most processes.

It turns out that this shortcoming can be easily
addressed within the binomial framework,6 as fol-
lows: Suppose that, rather than thinking of uncer-
tainty on an annual basis, we take it in smaller
pieces. Specifically, suppose we adjust our mea-
sure of annual uncertainty to an equivalent mea-
sure of quarterly uncertainty, and model propor-
tionate up and down movements in the uncertain
variable during each three-month period. That is,
we allow for two possible outcomes at the end of
the next three months. Then, from each of the
outcomes three months from now, values of the

6. Cox, Ross and Rubenstein (1979).

While the traditional NPV criterion does a reasonable job of valuing simple,
passively-managed projects, it does not capture the many ways in which a highly

uncertain project might evolve, and the ways in which active managers will
influence this evolution.
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uncertain variable will move up or down once
again, in the same proportional increments, and so
on. Formally, we are allowing for four binomial
trials within the year.

There are many ways to incorporate estimates
of uncertainty into event trees. One common formu-
lation, which will be discussed in detail in the fifth
section, produces the event tree shown in Figure 5.
In this tree, a project’s present value, PV, evolves to
either PV+ or PV– at the end of three months. From
each of these nodes, project value can increase or
decrease once again, with the same proportional up
and down movements. Note that the branches
recombine in that the PV+– node can be reached from
the starting node PV either by consecutive move-
ments up then down, or by consecutive movements
down then up. Therefore, allowing for four binomial
trials within the year generates five possible out-
comes at the end of the year, as shown in Figure 5.
In general, allowing for T binomial trials produces
T+1 future outcomes. Therefore, if we wish to pursue
a binomial approach, we can make our formulation
more realistic by allowing for more frequent bino-
mial trials.

Note that, given fixed probabilities of up and
down movements from each node, the outcomes at
the extremes (nodes PV++++ and PV––––) are less
likely than the moderate outcomes. For example,
there is only one possible path to node PV++++, which
can be reached only by a series of four consecutive
upward movements in the uncertain variable. The
moderate outcomes, however, are much more likely

to occur, as there are many more possible paths. For
example, the central node PV++–– can be reached a
total of six different ways.7 The point is that, not only
does increasing the number of binomial trials lead to
a larger number of future outcomes, the distribution
of the outcomes has the realistic property that
moderate outcomes are more likely.

While allowing for five outcomes at the end of
the year is more comfortable than allowing for two,
we would be most comfortable in many situations by
considering a continuous range of future outcomes.
This can be accomplished by invoking the following
principle: as the length of time between binomial
trials approaches zero, the result is a continuous
distribution of future possible outcomes of the
uncertain variable. If the uncertain variable is the
price of a security underlying an option contract, the
binomial model converges to the Black-Scholes
option pricing model, which is derived using com-
plex tools of stochastic calculus. Interestingly, while
the model is difficult to derive, it is easily imple-
mented using a programmable financial calculator or
one of several personal computer spreadsheet pack-
ages. In fact, if our option follows the assumptions
of Black-Scholes, it can be valued in minutes.

The Black-Scholes model solves for option
values as a function of five variables: exercise price,
time to expiration, discount rate, the present value
of the underlying asset, and volatility. It can be
extended to the valuation of real options by recog-
nizing the parallels between real and financial
options, as follows:

FIGURE 5

today 3 months 6 months 9 months 1 year

PV++++

PV+++–

PV++– –

PV+– – –

PV – – – –

PV PV+–

PV+

PV –

PV++

PV+++

PV – –

PV – – –

PV++–

PV+– –

7. In general, let T be the number of binomial trials and n be the number of
upward movements to reach a node. The number of paths to the node is equal
to [T!/((T-n)!n!)]. If we define p as the probability of an upward movement, the joint

probability of reaching the node is found by multiplying the number of paths by
pn(1 – p)T – n. See Copeland and Weston (1988), pp. 264-265.
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1. The exercise price. For a capital investment
project, this is the dollar value in the future (not
discounted to the present) of the capital expendi-
tures necessary to implement the flexible portion
of the project. For example, this is the cost of the
plant and equipment necessary to support full-
scale production ($12 million) in the pharmaceu-
tical illustration.

2. The time to expiration. The length of time before
a decision must be made and capital committed. In
all of our examples, this would be one year.

3. The discount rate, which is used to convert
future amounts to present values.

4. The value of the underlying asset. For an option
written on a share of stock, this is the current value
of the share of stock; for a capital investment
project, this is the present value of the cash inflows
expected from the flexible portion of the project.
For example, in the growth option (e-commerce)
example, this would be the probability weighted
average of $240 million and $135 million, dis-
counted back to the present.

5. Volatility, as measured by the standard deviation
(sigma) of the rate of growth in the value of the
underlying asset. (Details on the estimation and
interpretation of this measure of uncertainty will be
presented in the fifth section.)

Let’s apply the Black-Scholes model to the
pharmaceutical timing option example. Here the
exercise price is the $12 million investment to
construct the plant one year from now. Time to
expiration is 365 days (one year), and the discount
rate (for simplicity) is 20%.8 What about the volatility
measure? While it appears that we haven’t used a
sigma in our calculations, a sigma of 1.1, or 110%,
was used to determine the range of outcomes ($39
million to $4.3 million) and their probabilities.9

Finally, the value of the underlying asset is our best
estimate of the gross value of the opportunity today
(before subtracting capital investments included in
the exercise price). This estimate includes the present
value of cash inflows that building the plant would
generate, but does not take account of the fact that we
only will invest in the plant in the up state. That is, the
value of the underlying asset10 is approximately

PV = [(.33)($39.00) + (.67)($4.30)]/(1 + .2)
= 13.13 million [9]

A summary of inputs, and the resulting Black-
Scholes call option value, is shown in Table 1.

How does this compare to our binomial esti-
mate of value? The Black-Scholes model tells us that
the option to invest $12 million one year from now
to construct a plant is worth $6.6 million. Our
binomial evaluation (in equation [2]) told us that,
after incorporating the $4 million investment for
clinical trials, the project has a modified NPV of $3.4
million. This means that the option itself is worth $3.4
million plus $4 million, or $7.4 million. That is, the
binomial valuation overstates the Black-Scholes valu-
ation by $0.8 million, or approximately 11% of the
binomial valuation. In fact, because the binomial
method is an approximation to Black-Scholes, it will
converge to the Black-Scholes value only as the
number of binomial trials approaches infinity. As this
example illustrates, the binomial value tends to
approach the Black-Scholes value from above, slightly
overstating the Black-Scholes value.

If the Black-Scholes model is so easy to imple-
ment and is characterized by a realistic distribution
of future project values, why do we even discuss the
binomial model? First, because the binomial model
converges to Black-Scholes, it is useful for under-

TABLE 1
BLACK-SCHOLES
VALUATION OF
PHARMACEUTICAL TIMING
OPTION EXAMPLE, USING
SIMPLIFYING ASSUMPTION
FOR DISCOUNT RATE

Exercise price $12 million
Time to expiration 365 days
Discount rate 20%
Volatility 110%
Value of underlying asset $13.13 million
Black-Scholes valuation of plant investment as a call option $6.6 million

8. Once again, this discount rate is not really correct; the appropriate discount
rate will be discussed in Section IV.

9. The link between sigma and the range of outcomes will be outlined in
Section V. For this example, the values of $39 and $4.3 were determined from an
assumed underlying asset value today of $13 million and an annualized volatility
of 110%. The careful and informed reader may calculate an implied volatility from

the figures in Table 1 of approximately 108.9%. The difference between 108.9%
and 110% is due to a series of rounding choices made throughout this example
by the author.

10. Incidentally, it is correct to calculate the value of the underlying asset using
the risk-adjusted discount rate.

Increasing the number of binomial trials not only leads to a larger number of future
outcomes, but the distribution of the outcomes has the realistic property that

moderate outcomes are more likely.
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standing the essence of option valuation while
avoiding the complex mathematics used to derive
Black-Scholes. Second, and more important, there
are cases in which the Black-Scholes model does not
apply, but where the binomial serves as a good
approximation of the option’s value. For example,
the Black-Scholes model assumes that the expected
value of the underlying asset grows over time at the
risk-adjusted discount rate, and that the risk of the
underlying asset is constant over time. Moreover, the
Black-Scholes model works best if there is only one
decision to be made on some future date, while the
binomial model applies if there is a series of sequen-
tial decisions or multiple options.

Finally, we need to be very careful in defining
Black-Scholes inputs for capital investment projects;
it often is not as easy as it appears. The biggest
difficulty is that many projects with option elements
also include one or more assets-in-place. Consider
the growth option example. The cash flows in the
first year are not subject to any flexibility, and are
properly valued with standard discounted cash flow
techniques. Black-Scholes valuation requires the
identification of assets-in-place where they are
present, and the separation of assets-in-place from
option elements for purposes of defining Black-
Scholes inputs. This requires careful strategic fram-
ing of the project, and takes a little practice.

Table 2 presents a summary of the four ex-
amples, distinguishing assets-in-place from options
and then mapping project attributes into the five
Black-Scholes option valuation inputs. You will note
that the discount rate for option valuation in Table
2 is the risk-free rate (the reason for which will be
provided in the next section). Also, you will note that
the underlying asset is always measured as the
present value today of cash inflows from the flexible
portion of the project, but ignoring the fact that these
flows will be selectively captured. (This issue will be
further explained in the fifth section.)

THE DISCOUNT RATE

Up to now, we’ve avoided the issue of the
appropriate discount rate to use in option valuation,
and we need to determine the rate appropriate for
both the binomial and Black-Scholes approaches.
We begin with the premise that the discount rate

appropriate for discounting risky cash flows should
reflect the risk of those cash flows. So, in determin-
ing the correct rate for discounting an option, the
most obvious initial choice is the same risk-adjusted
discount rate that we would use were we to value
the project using the NPV rule (with no flexibility).
But let us ask a fundamental question: Does a
flexible claim on an asset (an option) have the same
risk as the underlying asset itself? The answer is
“no,” for two reasons. On one hand, a flexible claim
is less risky because capital investment in the future
will be made only if favorable outcomes occur, and
losses can be contained. On the other hand, an
option is a levered claim on the underlying asset,
where a small amount is invested now for poten-
tially large (or zero) returns in the future. It is well
understood that a levered claim is more risky than
an unlevered claim (an outright investment) on the
same underlying asset.11

So, since choosing an appropriate risk-adjusted
discount rate is problematic, why not put the risk
adjustment into the cash flows themselves? That is,
let’s compute the “certainty equivalent” of the risky
cash flows. The certainty equivalent of a future risky
payoff is the smaller, certain payoff that we would be
willing to exchange for that uncertain future amount.12
The benefit of this approach is that, if we can
incorporate the risk adjustment into the cash flows,
we can synthetically create riskless option payoffs
and discount them at the risk-free rate.

To illustrate, let’s return to the pharmaceutical
development example. Recall that we expected a
$39 million payoff with a 33% probability, and a $4.3
million payoff with a 67% probability. The expected
value of payoffs one year from now is $15.75 million:

Risky expected value = (.33)($39.00) + (.67)($4.30)
= $15.75 million [10]

The present value of this risky expected future
outcome can be measured by discounting at the risk-
adjusted rate of 20%, as follows:

Present value = $15.75/(1 + 0.20)
= $13.13 million [11]

But there is another way to compute the
present value of this risky expected future cash

11. See Hull (1995), p. 11; and, in this issue, Hodder and Mello (2001). 12. See Brealey and Myers (1996), p. 226.
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flow. Let’s change the actual estimates of prob-
abilities (that is, 33% for the up state and 67% for
the down state) to risk-neutral probabilities. Ap-
plying risk-neutral probabilities to the risky future
outcomes results in a risk-free expected value. We
are indifferent between this risk-free amount to be
received with certainty and the risky $15.75,
which is uncertain. Risk-neutral probabilities can
be determined by noting that (1) an asset can have
only one value at any point in time, and (2) that
same value can be determined by discounting
risky cash flows at the risk adjusted rate (as in
Equation [11]), or riskless cash flows at the risk-

free rate. Denoting unknown risk-neutral prob-
abilities as p' and assuming a risk-free rate of 5%,
we can assert the following equality:

$13.13 = [(.33)($39.00) + (.67)($4.30)]/(1 + .20)
= [(p')($39.00) + (1 – p')($4.30)]/(1 + .05) [12]

Because we have one equation and one unknown,
this equality can be used to determine the risk-
neutral probability of the up state as 27.3%. The
expected value of future cash flows using risk-
neutral probabilities, or the certainty equivalent of
these cash flows, is:

TABLE 2
SUMMARY OF FOUR OPTION TYPES WITH REGARD TO PRESENCE OF ASSETS-IN-PLACE AND BLACK-SCHOLES
VALUATION INPUTS

Timing Option Growth Option Production Option Abandonment Option
(Pharmaceutical) (E-Commerce) (Copper Mine) (Main Extension)

FIRST, DISTINGUISH ASSETS-IN-PLACE FROM OPTIONS...

Asset-in-Place
(Value using
standard DCF
approaches)

None Present value of e-
commerce cash
inflows without
adding capacity

Present value of $10
million outflow one
year from now for
fixed costs

Present value of
future cash inflows
to the main without
selling to competitor

Option
(Value using
binomial or Black-
Scholes approaches)

Call option: right to
invest $12 million to
construct plant

Call option: right to
invest $200 million to
employ excess
capacity

Call option: right to
invest variable costs
of $35 million to
refine copper ore

Put option: right to
sell main extension
to competitor for
$250 million

...THEN, IDENTIFY BLACK-SCHOLES PARALLELS.

Exercise price $12 million $200 million $35 million $250 million
Time to expiration 365 days 365 days 365 days 365 days
Discount rate 5% 5% 5% 5%
(Options are valued
using the risk-free
rate for
discounting a)

Annual standard
deviation in rate of
growth of the
present value of cash
inflows

Annual standard
deviation in rate of
growth of the
present value of cash
inflows

Annual standard
deviation in rate of
growth of the price
of copper

Annual standard
deviation in rate of
growth of the present
value of cash inflows
(based on the price
of natural gas)

Value of underlying
asset (The underlying
asset is valued using
a risk-adjusted rate
for discounting)

Present value of
future expected cash
inflows to drug,
assuming it will be
sold whether trials
are successful or
unsuccessful

Present value of
future additional
expected cash
inflows to venture,
assuming excess
capacity is brought
on line regardless of
first year results

Present value of
future expected cash
inflows from copper
sales, assuming
copper will be mined
regardless of copper
price

Identical to the asset-
in-place: present
value of expected
cash inflows to the
main without selling
to LDC

a. See the fourth section of this article.

Volatility

As the length of time between binomial trials approaches zero, the binomial model
converges to the Black-Scholes option pricing model. While the model is difficult to
derive, it is easily implemented using a programmable financial calculator or one of

several personal computer spreadsheet packages.
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Risk-free expected value = (.273)($39.00) + (.727)($4.30)
= $13.77. [13]

Note that the certainty equivalent expected value,
$13.77, is less than the risky expected value of $15.75.
This will usually be the case; rational investors will be
indifferent between a smaller future amount to be
received with certainty and a larger, uncertain future
amount. However, when the certainty equivalent
$13.77 is discounted at the risk-free 5% rate, the present
value of approximately $13.13 results.

Generalizing and re-arranging equation [12] to
solve for p' yields the following expression for
determining risk-neutral probabilities,

p' = [PV0(1 + r) – PV1
–]/(PV1

+ – PV1
–) [14]

where PV0 is the present value today of the under-
lying asset, PV1

+ is the present value in the up state
one year from now, PV1

– is the present value in the
down state one year from now, and r is the annual
risk-free rate of interest. Equation [14] can be used to
determine directly the risk-neutral probability of an
upward movement for the current example as follows:

p' = [13.13(1 +.05) – 4.30]/(39.00 – 4.30) = 27.3% [15]

Think for a moment about what we’ve just done.
Instead of putting the risk adjustment in the discount
rate, we’ve put it into the probabilities that charac-
terize our primary source of uncertainty—in this case
the success of the clinical trials. Because we will only
make our future capital investment in the up state,
these probabilities also depict the likelihood of
making the $12 million capital investment in the
future. We therefore can use the risk-neutral prob-
abilities and the risk-free rate to more correctly value
the option inherent in the initial $4 million expendi-
ture, as in the following refinement to equation [2]:

Corrected NPV = (–$4) + ([(.273)($27.00) + (.727)($0.00)]/
(1 + .05))

= $3 million [16]

While correcting the discount rate in this example
does not reverse our recommendation, it does alter
the NPV of the project by about 12% (from our
original estimate of $3.4).

At this point, it should be clear that real options
analysis is more than an application of decision
trees.13 It also requires an understanding of basic
financial principles and a careful consideration of the
discount rate. While we can finesse the discount rate
issue by using, for example, actual probabilities and
the risk-adjusted discount rate, any strictly correct
binomial options analysis will use risk-neutral prob-
abilities and the risk-free rate. Further, because the
binomial and Black-Scholes models fundamentally
are based on the same principles, any strictly correct
Black-Scholes options analysis will also use the
riskless rate as the discount rate.14 At a risk-free rate
of 5%, the Black-Scholes evaluation of the pharma
example presented in Table 1 would be corrected to
generate the result in Table 3.

Correcting the discount rate has reduced the
Black-Scholes valuation of the option, from $6.6
million to $6.0 million, a decline of approximately 9%
of the option value. $6.0 million is the correct Black-
Scholes option value.

VOLATILITY: MEASUREMENT AND
INCORPORATION

At this point, we have addressed four of the five
factors necessary to conduct an option pricing
analysis: time to expiration, underlying asset value,
exercise price, and discount rate. It is interesting to
note that these four factors can be extracted from the
same information assembled to conduct a traditional

13. Trigeorgis and Mason (1987).
14. Actually, Black and Scholes derived their model by constructing riskless

hedges of the uncertain future outcomes. Their model is identical, however, to a

binomial approach using risk-neutral probabilities and the risk-free rate, when the
number of binomial trials approaches infinity. See Cox, Ross and Rubenstein
(1979).

TABLE 3
BLACK-SCHOLES
VALUATION OF
PHARMACEUTICAL TIMING
OPTION EXAMPLE,
CORRECTED TO USE RISK-
FREE RATE

Exercise price $12 million
Time to expiration 365 days
Discount rate (risk-free rate) 5%
Volatility 110%
Value of underlying asset $13.13 million
Black-Scholes valuation of plant investment as a call option $6.0 million
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NPV analysis. However, there is one remaining
implementation issue, and it involves gaining an
understanding of a factor not explicitly required for
an NPV analysis. This factor is uncertainty or volatil-
ity, and it must be estimated whether we plan to
conduct a binomial or Black-Scholes analysis. For
Black-Scholes, we need a measure of volatility as a
model input. For a binomial formulation, we will
need to use volatility to construct our event trees.

As mentioned in the third section, volatility is
based upon uncertainty about the rate of growth in
the value of the underlying asset. Specifically, for a
real option, it is our best estimate of the standard
deviation (sigma) of the rate of growth in the present
value of the underlying asset. The first step in the
estimation of volatility is a careful look at the project
to determine its primary source of uncertainty. What
is unknown today which, when it becomes known,
will indicate the value-maximizing course of action?
With luck, we can isolate the source of uncertainty
in a single significant uncertain factor for which
reasonable historical data exist, and measure it in a
straightforward fashion. For example, in the aban-
donment (main extension) illustration, uncertainty
would be modeled as the standard deviation in
possible rates of growth of the price of natural gas
between today and one year from now. It could be
estimated based on a historical time series of prices
of natural gas, using the assumption that the past is
indicative of the future.

Typically, however, measurement of sigma is
not this simple. For example, in the pharma timing
option illustration, a reliable time series of historical
data on the growth in value of a typical development
effort likely will not exist. One solution would be to
apply simulation analysis to the present value of the
underlying asset to estimate the cumulative effect of
many uncertain variables, and to draw inferences
about sigma from the simulation. Another approach,
used by Merck,15 is to estimate volatility on the basis
of the performance of a selected portfolio of bio-
technology stocks, under the assumption that the
volatility of this portfolio is reflective of the volatility
of a typical development effort. While this approach
has some intuitive appeal, it is important to note that
the volatility of one firm’s stock represents the
volatility of a diversified portfolio of ongoing projects,
and the volatility of a portfolio of stocks incorporates

an additional diversification effect across firms. As
such, volatility as measured by Merck will understate
the volatility of a typical single project under consid-
eration, and understate the estimate of option value
accordingly. Perhaps such a measure of volatility is
best incorporated as a conservative minimum vola-
tility level. Finally, we could turn the question
around as follows: How large would sigma need to
be in order for the project to generate shareholder
value? As noted earlier, greater volatility produces a
greater option value, all else equal. It might be more
comfortable to reason that volatility is greater than
some threshold or breakeven level, than it is to
measure it directly.

How does the Black-Scholes model incorporate
the estimate of volatility? It begins with a measure-
ment of the underlying asset, which is the present
value today of expected cash inflows from the
flexible portion of the project. The Black-Scholes
model uses this value, together with the measure of
volatility, to essentially map out a time path of future
values of the underlying asset from today through
the decision date, much like an expanded version of
the event tree presented in Figure 5. The model then
produces an option value that reflects rational exer-
cise. For example, a call option’s value solved by the
Black-Scholes model reflects both the value that can
be captured at expiration by exercising when the
underlying asset value exceeds the strike price at
expiration, and the likelihood of such occurrences.

While the Black-Scholes model is far easier to
implement than a binomial approach, we know that
it contains some restrictive assumptions that may not
apply to our real option. If our option does not fit
neatly into the Black-Scholes assumptions, we will
need to apply a binomial approach, using our
estimate of volatility to manually construct an event
tree. As in the Black-Scholes model, we will begin
our event tree construction with a measurement of
the underlying asset value using standard DCF
procedures. From this figure, the value of the
underlying asset will evolve up and down.

Suppose that our primary source of uncertainty
is future sales volume, and that sales volume realized
after one year will dictate either a favorable or
unfavorable payoff. Our up and down movements
should reflect (1) our expectation of the average rate
of growth in sales volume, (2) how uncertain we are

15. Nichols (1994).

The Black-Scholes model works best if there is only one decision to be made on some
future date, while the binomial model applies if there is a series of sequential

decisions or multiple options.
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about the growth rate of future sales volume, and (3)
the logical constraint that sales volume measured
one year from now is bounded from below at zero
(that is, sales volume cannot be negative).

To begin, let’s depict our problem in the
following one-year, one trial context (see Figure 6).
That is, PV0 today (the present value of expected
cash inflows) will grow to PV0u with a p' probability,
or decline to PV0d with a (1-p') probability. A
generally accepted way to model the up and down
changes is shown in equation system [17],16

u = eσ [17]
d = 1/u

where e is the universal logarithmic constant equal
to approximately 2.718, and σ is the expected
annualized standard deviation in the rate of growth
in PV. While equation system [17] may look unfamil-
iar, the up movement represents compounding PV
at the rate of σ, while the down movement represents
discounting PV at the rate σ. The use of the logarith-
mic constant e allows rate σ to be compounded
continuously.17 The level of σ determines the size of
the up and down movements: the greater the
uncertainty, the wider the range. Note that the
multiplicative relationship between the up/down
movements and the starting value provides a reason-
able structure for our event tree, in that no matter
how large is σ, the final distribution of outcomes
cannot include negative values.

It often is necessary to stretch or shrink sigma
from one measurement basis to another. The Black-
Scholes model requires an estimate of annualized
sigma, so we may need a way to stretch a sigma based
on smaller time increments. On the other hand, we

may wish to allow for a more realistic number of
outcomes in a binomial analysis by converting an
annualized sigma to a periodic equivalent figure.

For example, suppose we measure sigma from
two years of monthly sales volume data from a
similar product line. If we want to construct an event
tree on an annual basis, or determine an annualized
estimate of sigma for Black-Scholes, we need to
stretch this monthly sigma to an annualized sigma.
This can be accomplished through the use of a basic
tenet of statistical theory: if a normally distributed
random variable has standard deviation σ over time
t, then its standard deviation over time T is σ(T/t).5.
So, if we estimate a monthly standard deviation of
3%, the annual equivalent is

Annualized σ = 0.03(360/30).5 = .03(12).5 = 10.4% [18]

Similarly, suppose we have an estimate of an annual
standard deviation (say, 7%) and we want to con-
struct an event tree with quarterly binomial trials. We
can shrink the annual standard deviation to a quar-
terly measure as follows:

Quarterly σ = .07/(360/90).5 = .07/4.5 = 3.5% [19]

The event tree is constructed by allowing the
value of the underlying asset to move up and down
according to equation system [17], which would use
an estimate of volatility consistent with the chosen
time steps for the event tree. If we were valuing a call
option assuming quarterly binomial trials and a one-
year expiration date, for example, the event tree
would look much like the one presented in Figure
5. The analyst would manually apply a decision rule
to the five final nodes, assuming option exercise

16. Cox, Ross and Rubenstein (1979). This system for u and d is based on the
assumption that that the rate of growth in PV between now and year-end is
normally distributed, which is equivalent to assuming that the future distribution
of PV is lognormally distributed. A lognormal distribution is skewed and bounded
from below at zero. For more on distributional assumptions, see Hull (1995),
Chapter 11.

17. We can roughly approximately equation system [17] using more familiar
discrete compounding by allowing u to equal (1+σ). However, because the Black-
Scholes model assumes continuous compounding, use of continuous compound-
ing as shown in equation system [17] is recommended.

FIGURE 6
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where the value of the underlying asset exceeds the
exercise price, and assuming the option expires
worthless where the value of the underlying asset is
less than the exercise price. The resulting values
would be weighted by their probabilities18 of occur-
rence, and discounted to present value at the risk-
free rate to determine option value.

CONCLUDING REMARKS

The preceding discussion establishes that the
presence of flexibility in capital investments funda-
mentally changes the methodology by which invest-
ment proposals should be analyzed. Borrowing from
an established framework for security options, real
options approaches allow us to quantify formally the
value of flexibility.

This paper offers a practical approach to the
understanding of real options, and synthesizes the
structure by which such options can be identified
and evaluated. Binomial examples are used to
illustrate how options differ from assets-in-place,
and how those differences affect their evaluation.
We recognize that the simplicity of the binomial
approach comes at a cost, in the form of an unreal-
istic distribution of two future outcomes. We present
the Black-Scholes model as a special case of the
binomial, in that the binomial model converges to
Black-Scholes as the number of binomial trials
approaches infinity. While the Black-Scholes model
allows for a realistic continuous range of future
outcomes and is quickly executed using a spread-
sheet, it applies (without complex mathematical
adjustments) only to real options characterized by
one-time decisions. Also, the Black-Scholes model
incorporates distributional assumptions that may not
hold for the option being evaluated.

For example, production options entail succes-
sive periodic decisions to produce only when we can
cover our variable costs of production. Extending
the Black-Scholes model to more complex options
is possible, but may not be the best use of the scarce
time of many practitioners. These situations often are
best handled by the more cumbersome, but more
flexible, binomial approach. It is interesting to note

that both option valuation approaches require the
same information as a traditional NPV analysis, with
one exception: options approaches require an ex-
plicit measure of risk.

The extension of option valuation approaches,
which have developed in the context of securities
markets, to the evaluation of real options is not
without translation problems. The binomial and
Black-Scholes approaches assume active trading in
the underlying instrument; but real assets, of course,
are not actively traded. Furthermore, in the Black-
Scholes model, the exercise price and time to
maturity are fixed by contract. For real options, both
the level of the exercise price (future capital commit-
ment) and the timing of this investment are uncertain.19
Finally, the use of option techniques as a decision
criterion is not time-tested. We will not know for some
time whether firms practicing these valuation ap-
proaches make “better” investment decisions.

Perhaps the greatest barrier to the widespread
practice of real options valuation is the knowledge
barrier inherent in this newer, less understood
approach. Sub-optimal investment decisions likely
are resulting from managerial reluctance to incorpo-
rate real options analyses in investment proposals,
and from managerial inability to fully understand
the real options analyses prepared by others. It is
important, despite the difficulties inherent in real
option valuation, that practitioners develop an un-
derstanding of real options, including recognizing,
creating, and valuing such options. Traditional NPV
approaches simply do not appropriately value highly
uncertain, actively managed projects, and many
managers are in search of a better way. Learning
option valuation approaches does require a non-
trivial commitment, but these techniques are well
within the capabilities of managers motivated to
devote time to the issue. While this paper is not
intended to transform the reader into a real options
expert, it hopefully will give him or her the confi-
dence and interest to learn more. At a minimum, an
effort to understand real options facilitates a valu-
able change in mindset, an increased appreciation
for the creation and preservation of flexibility in
strategic investments.

18. It is important to remember that risk-neutral probability measurement must
be consistent with the time steps chosen for event tree construction. For example,
for quarterly binomial trials, the risk-free rate in equation [14] must be a quarterly
rate, and the up and down state values must be quarterly estimates, determined
from a quarterly sigma in equation system [17].

19. This concern is mitigated by our ability to determine a range of options
values, using a range of possible exercise prices and expiration dates.

Perhaps the greatest barrier to the widespread practice of real options valuation is
the knowledge barrier inherent in this newer, less understood approach.
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